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Abstract—Electron-donating substituted 3-cyanomethyl-2-vinylindoles were found to rearrange via thermal [1,5]H shift into the
corresponding indole-2,3-quinodimethanes which were trapped by dienophiles to afford tetrahydrocarbazoles. © 2002 Elsevier
Science Ltd. All rights reserved.

2-Vinylindoles1 have proved to be versatile 4�-electron
components in Diels–Alder reactions aiming at regio-
and stereoselective syntheses of indole alkaloids,2 car-
bazoles,3 and non-natural [b ]annelated indole
derivatives4 of pharmacological interest.

In continuation of our interest in the chemistry of
2-vinylindoles 1,5 we decided to study their thermal
Diels–Alder reactivity toward electron deficient
dienophiles. According to Pindur’s analyses6 Diels–
Alder reactions between 2-vinylindoles and acrylate
type dienophiles would be a HOMOdiene–LUMOdienophile

controlled process via the energetically favored endo
transition state with a predictable regioselectivity.

Normal Diels–Alder reactivity of 1 should afford
cycloadducts of type 2, possible intermediates toward
Aspidosperma alkaloids. However, alternatively, a sec-
ond pathway to tetrahydrocarbazoles 4, involving an
indole-2,3-quinodimethane intermediate 3 via thermal
[1,5]H shift, could also be envisaged (Scheme 1). A few
related transformations on 2-alkyl-3-vinyl-,7 and 2-
vinyl-3-alkylindoles8 have already been observed, and
molecular modelling calculations9 evidenced that [1,5]-
sigmatropic migration of one of the benzyl protons of
2-vinylindoles 1 was energetically favored.

Herein we disclose our preliminary results illustrating
the synthetic utility of 3-cyanomethyl-2-vinylindoles (1)
as indole-2,3-quinodimethane10 equivalents in thermal
Diels–Alder reactions (Scheme 2).

Unprotected 1a and electron-withdrawing group substi-
tuted 2-vinylindoles 1b and 1c failed to react, whereas
introduction of electron-donating groups resulted in a

Scheme 1.
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Scheme 2.

Higher temperature favored the relatively more stable
diene 3A, affording 4-d-A as major product (entry 2).
Formation of such a functionalized tetrahydrocar-
bazoles by cycloaddition confirmed the expected ther-
mal induced (measured Tmin=140–150°C) [1,5]-sigmat-
ropic shift of the methylene protons in 1 leading to
‘primary’ dienes 3B and 3C, capable of isomerising at
this temperature to 3A and 3D, respectively (Scheme 2).

As even in a longer reaction important quantity of
non-reacted starting material 1d was recovered, we tried
to enhance the reactivity of 1, and consequently that of
3, by varying the electron-donating indole NH protect-
ing groups. Significant improvements in conversion and
diastereoselectivity were achieved by MOM (methoxy-
methyl) 1f, and even more by SEM (trimethylsilyl-
ethoxymethyl) 1g substitution (entries 3 and 4). In this
latter case both isolated cycloadducts derived from the
so-called ‘primary diene’ 3-B, resulting from an ‘ortho ’–
endo (4-g-B) or ‘meta ’–endo approach (4-g-meta). Rela-
tive stereochemistry of these acrylate type cycloadducts
was deduced by the same manner.13

In order to avoid the formation of regioisomers for the
further experiences symmetrical maleimides were cho-
sen. Methyl substituted 2-vinylindole 1e heated in a
sealed tube at 165°C with 2 equiv. of N-methyl-
maleimide gave rise to a mixture of cycloadducts from
which 7-e-B-y as main product (31%), resulting from
diene 3B, could be isolated (entry 5). Cycloaddition in
N-MOM series (1f) with N-methylmaleimide showed
similar behavior (entry 6). Cycloaddition of SEM sub-
stituted diene 1g with different maleimides (entries 7–9)
allowed us to enhance the overall yield and in some
extent the diastereoselectivity. Consistently, cycload-
ducts with CH3 and CN groups in 1,4-trans relative
configuration deriving from 3B dienes were obtained as
major compounds. As expected, overall yield and selec-
tivity were sensible to both R1 and R2 substitutions: in
the SEM series N-methylmaleimide (6y) provided the
best results with 68% yield of 7-g-B-y (entry 8). How-
ever, in each case at least three ‘endo ’ cycloadducts
could be identified, originating from indolo-2,3-
quinodimethanes 3A, 3B, and 3C. Structural assign-
ments of tetracyclic adducts14 were based on combined
NMR methods supported by NOE measurements. It is
noteworthy that in racemic series formation of 7-e-C-y,
7-f-C-y, 7-g-C-x, 7-g-C-y, and 7-g-C-z, may result from
3A by an exo transition state, instead of the constrained
‘primary diene’ 3C.

In summary, we have found that 3-cyanomethyl-2-
vinylindoles 1d-g could be considered as thermal indole-
2,3-quinodimethane equivalents (3), and consequently
useful diene partners for the preparation of functional-
ized tetrahydrocarbazoles by [4+2] type cycloadditions.
To the best of our knowledge thermally induced [1,5]H
shift of 1d-g coupled with intermolecular Diels–Alder
reaction is the first example for the preparation of the
1,4-trans disubstituted tetrahydrocarbazole core.15

Moreover, we evidenced that chemical yield and stereo-
chemical outcome strongly depended on the indole

breakthrough in reactivity. Thus, exposure of 1d in
toluene to methyl acrylate 5 at 160°C in a sealed tube
for 44 h gave rise to a complex mixture of adducts,
from which endo adducts 4-d-A and 4-d-B,11 derived,
respectively, from the indole-2,3-quinodimethanes 3A
and 3B, could be isolated (Table 1, entry 1).12

From the 1H NMR spectrum the three proton doublets
at � : 1.33 ppm (J=6.7 Hz) for the minor (4-d-A), and
at � : 1.23 ppm (J=7.6 Hz) for the major diastereomer
(4-d-B) could be attributed to the methyl groups situ-
ated on C-1 of the tricyclic ring systems.

The relative stereochemistry was determined by usual
combination of NMR experiments and by comparison
of coupling constants. Thus, the observed coupling
constants, JH-3�H-4=5.5 Hz in 4-d-A and 4-d-B were in
accordance with the H-3/H-4 cis relative configuration,
resulting from an endo transition state, while the two
small vicinal couplings of H-1 (JH-1�H-2=5.3 and JH-1�H-2�

=2.5 Hz) in 4-d-B agreed with a quasi-axially oriented
CH3 group. In 4-d-A the opposite relative configuration
of C-1 carbon was assigned on the basis of a large
coupling constant (JH-1�H-2=9.5 Hz).



M. Laronze, J. Sapi / Tetrahedron Letters 43 (2002) 7925–7928 7927

Table 1. Preparation of tetrahydrocarbazoles (4, 7) from 3-cyanomethyl-2-vinylindoles (1) by Diels–Alder reaction12

a Unseparable mixture of diastereomers (-mix).

N-substitution. Application of these findings in the
synthesis of functionalized carbazoles of biological
interest is currently in progress.
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