

Tetrahedron Letters 43 (2002) 7925-7928

3-Cyanomethyl-2-vinylindoles as thermal indole-2,3-quinodimethane equivalents: synthesis of functionalized 1,2,3,4-tetrahydrocarbazoles

Marie Laronze and Janos Sapi*

UMR CNRS 6013 'Isolement, Structure, Transformations et Synthèse de Produits Naturels', IFR 53 'Biomolécules' Faculté de Pharmacie, Université de Reims-Champagne-Ardenne, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France

Received 10 July 2002; revised 2 September 2002; accepted 5 September 2002

Abstract—Electron-donating substituted 3-cyanomethyl-2-vinylindoles were found to rearrange via thermal [1,5]H shift into the corresponding indole-2,3-quinodimethanes which were trapped by dienophiles to afford tetrahydrocarbazoles. © 2002 Elsevier Science Ltd. All rights reserved.

2-Vinylindoles¹ have proved to be versatile 4π -electron components in Diels–Alder reactions aiming at regioand stereoselective syntheses of indole alkaloids,² carbazoles,³ and non-natural [*b*]annelated indole derivatives⁴ of pharmacological interest.

In continuation of our interest in the chemistry of 2-vinylindoles 1,⁵ we decided to study their thermal Diels–Alder reactivity toward electron deficient dienophiles. According to Pindur's analyses⁶ Diels–Alder reactions between 2-vinylindoles and acrylate type dienophiles would be a HOMO_{diene}–LUMO_{dienophile} controlled process via the energetically favored *endo* transition state with a predictable regioselectivity.

Normal Diels–Alder reactivity of **1** should afford cycloadducts of type **2**, possible intermediates toward *Aspidosperma* alkaloids. However, alternatively, a second pathway to tetrahydrocarbazoles **4**, involving an indole-2,3-quinodimethane intermediate **3** via thermal [1,5]H shift, could also be envisaged (Scheme 1). A few related transformations on 2-alkyl-3-vinyl-,⁷ and 2-vinyl-3-alkylindoles⁸ have already been observed, and molecular modelling calculations⁹ evidenced that [1,5]-sigmatropic migration of one of the benzyl protons of 2-vinylindoles **1** was energetically favored.

0040-4039/02/\$ - see front matter 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01907-X

Herein we disclose our preliminary results illustrating the synthetic utility of 3-cyanomethyl-2-vinylindoles (1) as indole-2,3-quinodimethane¹⁰ equivalents in thermal Diels–Alder reactions (Scheme 2).

Unprotected **1a** and electron-withdrawing group substituted 2-vinylindoles **1b** and **1c** failed to react, whereas introduction of electron-donating groups resulted in a

Scheme 1.

Keywords: Diels–Alder reaction; 3-cyanomethyl-2-vinylindole; indole-2,3-quinodimethane; [1,5]-sigmatropic hydrogen shift; tetrahydro-carbazoles.

^{*} Corresponding author. Tel.: +33-(0)326-918-022; fax: +33-(0)326-918-027; e-mail: janos.sapi@univ-reims.fr

Scheme 2.

breakthrough in reactivity. Thus, exposure of 1d in toluene to methyl acrylate 5 at 160°C in a sealed tube for 44 h gave rise to a complex mixture of adducts, from which *endo* adducts 4-d-A and 4-d-B,¹¹ derived, respectively, from the indole-2,3-quinodimethanes 3A and 3B, could be isolated (Table 1, entry 1).¹²

From the ¹H NMR spectrum the three proton doublets at δ : 1.33 ppm (*J*=6.7 Hz) for the minor (**4-d-A**), and at δ : 1.23 ppm (*J*=7.6 Hz) for the major diastereomer (**4-d-B**) could be attributed to the methyl groups situated on C-1 of the tricyclic ring systems.

The relative stereochemistry was determined by usual combination of NMR experiments and by comparison of coupling constants. Thus, the observed coupling constants, $J_{\text{H-3-H-4}}=5.5$ Hz in **4-d-A** and **4-d-B** were in accordance with the H-3/H-4 *cis* relative configuration, resulting from an *endo* transition state, while the two small vicinal couplings of H-1 ($J_{\text{H-1-H-2}}=5.3$ and $J_{\text{H-1-H-2'}}=2.5$ Hz) in **4-d-B** agreed with a quasi-axially oriented CH₃ group. In **4-d-A** the opposite relative configuration of C-1 carbon was assigned on the basis of a large coupling constant ($J_{\text{H-1-H-2}}=9.5$ Hz).

Higher temperature favored the relatively more stable diene **3A**, affording **4-d-A** as major product (entry 2). Formation of such a functionalized tetrahydrocarbazoles by cycloaddition confirmed the expected thermal induced (measured $T_{\min} = 140-150^{\circ}$ C) [1,5]-sigmatropic shift of the methylene protons in **1** leading to 'primary' dienes **3B** and **3C**, capable of isomerising at this temperature to **3A** and **3D**, respectively (Scheme 2).

As even in a longer reaction important quantity of non-reacted starting material **1d** was recovered, we tried to enhance the reactivity of **1**, and consequently that of **3**, by varying the electron-donating indole NH protecting groups. Significant improvements in conversion and diastereoselectivity were achieved by MOM (methoxymethyl) **1f**, and even more by SEM (trimethylsilyl-ethoxymethyl) **1g** substitution (entries 3 and 4). In this latter case both isolated cycloadducts derived from the so-called 'primary diene' **3-B**, resulting from an '*ortho'-endo* (**4-g-B**) or '*meta'-endo* approach (**4-g-meta**). Relative stereochemistry of these acrylate type cycloadducts was deduced by the same manner.¹³

In order to avoid the formation of regioisomers for the further experiences symmetrical maleimides were chosen. Methyl substituted 2-vinylindole 1e heated in a sealed tube at 165°C with 2 equiv. of N-methylmaleimide gave rise to a mixture of cycloadducts from which 7-e-B-y as main product (31%), resulting from diene **3B**, could be isolated (entry 5). Cycloaddition in N-MOM series (1f) with N-methylmaleimide showed similar behavior (entry 6). Cycloaddition of SEM substituted diene 1g with different maleimides (entries 7-9) allowed us to enhance the overall yield and in some extent the diastereoselectivity. Consistently, cycloadducts with CH₃ and CN groups in 1,4-trans relative configuration deriving from 3B dienes were obtained as major compounds. As expected, overall yield and selectivity were sensible to both R_1 and R_2 substitutions: in the SEM series N-methylmaleimide (6y) provided the best results with 68% yield of 7-g-B-y (entry 8). However, in each case at least three 'endo' cycloadducts could be identified, originating from indolo-2,3quinodimethanes 3A, 3B, and 3C. Structural assignments of tetracyclic adducts¹⁴ were based on combined NMR methods supported by NOE measurements. It is noteworthy that in racemic series formation of 7-e-C-y, 7-f-C-y, 7-g-C-x, 7-g-C-y, and 7-g-C-z, may result from **3A** by an *exo* transition state, instead of the constrained 'primary diene' 3C.

In summary, we have found that 3-cyanomethyl-2vinylindoles **1d-g** could be considered as thermal indole-2,3-quinodimethane equivalents (**3**), and consequently useful diene partners for the preparation of functionalized tetrahydrocarbazoles by [4+2] type cycloadditions. To the best of our knowledge thermally induced [1,5]H shift of **1d-g** coupled with intermolecular Diels–Alder reaction is the first example for the preparation of the 1,4-*trans* disubstituted tetrahydrocarbazole core.¹⁵ Moreover, we evidenced that chemical yield and stereochemical outcome strongly depended on the indole

^a Unseparable mixture of diastereomers (-mix).

N-substitution. Application of these findings in the synthesis of functionalized carbazoles of biological interest is currently in progress.

Acknowledgements

Financial support (M.L.) of ADIR and Co. (Laboratoires Servier) is gratefully acknowledged. We thank C. Peterman and P. Sigaut for spectroscopic measurements.

References

- (a) Pindur, U. Heterocycles 1988, 27, 1253; (b) Pindur, U. In Advances in Nitrogen Heterocycles; Moody, C. J., Ed.; Cycloaddition Reactions of Indole Derivatives; JAI Press: Greenwich, 1995; Vol. 1, p. 121; (c) Sundberg, R. In Best Synthetic Methods, Sub-series Key Systems and Functional Groups; Meth-Cohn, O., Ed. Indoles; Academic Press: London, 1996; p. 159.
- For recent reviews on Aspidosperma, Iboga, and Strychnos type alkaloids, see: in Monoterpenoid Indole Alkaloids—Supplement to Vol. 25, Part IV, *The Chemistry of Heterocyclic Compounds*; Saxton, J. E., Ed.; John Wiley & Sons: Chichester, 1994.

- For some additional references not cited in Ref. 1, see: (a) Macor, J. E. *Heterocycles* 1990, 31, 993; (b) Madalengoitia, J. S.; Macdonald, T. L. *Tetrahedron Lett.* 1993, 34, 6237.
- For some selected references using 2-vinylindoles, see: (a) Blechert, S.; Wirth, T. *Tetrahedron Lett.* **1992**, *33*, 6621;
 (b) Wiest, O.; Steckhan, E. Angew. Chem., Int. Ed. Engl. **1993**, *32*, 901; (c) Elango, S.; Srinivasan, P. C. *Tetrahedron Lett.* **1993**, *34*, 1347; (d) Balasubramanian, T.; Balasubramanian, K. K. *Chem. Commun.* **1994**, 1237; (d) Dufour, B.; Motorina, I.; Fowler, F. W.; Grierson, D. S. *Heterocycles* **1994**, *37*, 1455. Using 2-vinyl-4-aza(or 7aza)indoles, see: (e) Rodriguez-Salvador, L.; Zaballos-Garcia, E.; Gonzalez-Rosende, E.; Djebouri Sidi, M.; Sepulveda-Arques, J.; Jones, R. A. *Synth. Commun.* **1997**, *27*, 1439; (f) Joseph, B.; Da Costa, H.; Mérour, J.-Y.; Léonce, S. *Tetrahedron* **2000**, *56*, 3189.
- (a) Sapi, J.; Grébille, Y.; Laronze, J.-Y.; Lévy, J. Synthesis 1992, 383; (b) Lévy, J.; Sapi, J.; Laronze, J.-Y.; Royer, D.; Toupet, L. Synlett 1992, 601.
- 6. Eitel, M.; Pindur, U. J. Org. Chem. 1990, 55, 5368.
- (a) Bergman, J.; Carlsson, R. Tetrahedron Lett. 1978, 4055; (b) Gallagher, T.; Magnus, P. Tetrahedron 1981, 37, 3889; (c) Weller, D. D.; Ford, D. W. Tetrahedron Lett. 1984, 25, 2105; (d) Modi, S. P.; McComb, T.; Zayed, A.-H.; Oglesby, R. C.; Archer, S. Tetrahedron 1990, 46, 5555.

- (a) Kano, S.; Sugino, E.; Shibuya, S.; Hibino, S. J. Org. Chem. 1981, 46, 2979; (b) Magnus, P.; Exon, C.; Sear, N. L. Tetrahedron 1983, 39, 3725.
- Augé, F. Ph.D. Thesis, Université de Reims-Champagne-Ardenne, 2002.
- 10. For a review, see: Pindur, U.; Erfanian-Abdoust, H. Chem. Rev. 1989, 89, 1681. For some selected papers, see: (a) de Carvalho, H. N.; Dmitrienko, G. I.; Nielson, K. E. Tetrahedron 1990, 46, 5523; (b) Pindur, U.; Haber, M. Tetrahedron 1991, 47, 1925; (c) Gribble, G. W.; Keavy, D. J.; Davis, D. A.; Saulnier, M. G.; Pelcman, B.; Barden, T. C.; Sibi, M. P.; Olson, E. R.; BelBruno, J. J. J. Org. Chem. 1992, 57, 5878; (d) Sha, C. K.; Yang, J. F. Tetrahedron 1992, 48, 10645; (e) Van Broeck, P. I.; Van Doren, P.; Hoornaert, G. Synthesis 1992, 473; (f) Fray, E. B.; Moody, C. J.; Shah, P. Tetrahedron 1993, 49, 439; (g) Miki, Y.; Hachiken, H. Synlett 1993, 333; (h) Kuroda, T.; Takahashi, M.; Ogiku, T.; Ohmizu, H.; Nishitani, T.; Kondo, K.; Iwasaki, T. J. Org. Chem. 1994, 59, 7353; (i) Basaveswara Rao, M. V.; Satyanarayana, J.; Ila, H.; Junjappa, H. Tetrahedron Lett. 1995, 36, 3385; (j) Jeevanandam, A.; Srinivasan, P. C. J. Chem. Soc., Perkin Trans. 1 1995, 2663; (k) Ciganek, E.; Schubert, E. M. J. Org. Chem. 1995, 60, 4629; (1) Daly, K. D.; Nomak, R.; Snyder, J. K. Tetrahedron Lett. 1997, 38, 8611; (m) Gribble, G. W.; Silvar, A.; Saulnier, M. G. Synth. Commun. 1999, 29, 729; (n) Diker, K.; Doe de Maindreville, M.; Royer, D.; Le Provost, F.; Lévy, J. Tetrahedron Lett. 1999, 40, 7463. For some other indole-quinodimethanes, see: (o) Kinsman, A. C.; Snieckus, V. Tetrahedron Lett. 1999, 40, 2453; (p) Tomé, A. C.; Enes, R. F.; Cavaleiro,

J. A. S.; Martarello, L.; Kirsch, G. Synlett 1997, 1444.

- All new compounds were fully characterized by spectroscopic (IR, MS, ¹H, ¹³C NMR) methods. Stereochemical investigations were supported by COSY, HMBC, HMQC, NOE techniques.
- Numbering of cycloadducts (e.g. 4-d-B) refers to the nature of indole *N*-substitution (d) and that of the intermediate indole-2,3-quinodimethane (B). For adducts with maleimides (6x-z) R₂ substitution is also considered (e.g. 7-g-B-y).
- 13. Selected data for **4-f-B**: mp 118.5–120°C; IR (KBr) 2233, 1736 cm⁻¹; ¹H NMR (CDCl₃) δ 1.34 (3H, d, J=7.0 Hz), 2.31 (1H, ddd, J=1.6, 3.2, 22.5 Hz), 2.47 (1H, ddd, J=5.1, 12.4, 22.5 Hz), 3.18 (1H, ddd, J=3.2, 5.3, 12.4 Hz), 3.28 (1H, ddd, J=1.6, 5.1, 7.0 Hz), 3.29 (3H, s), 3.87 (3H, s), 4.46 (1H, d, J=5.3 Hz), 5.32 and 5.40 (2H, AB system, J=11.1 Hz), 7.16–7.29 (2H, m), 7.41 (1H, d, J=7.1 Hz), 7.55 (1H, d, J=7.1 Hz); MS (EI) m/z 312 (M⁺), 281, 221.
- 14. Selected data for 7-g-B-y: amorphous solid; IR (CH₂Cl₂) 3053, 2953, 2236, 1780, 1709 cm⁻¹; ¹H NMR (CDCl₃) δ -0.02 (9H, s), 0.91 (2H, m), 1.40 (3H, d, J=7.3 Hz), 2.88 (3H, s), 3.31 (1H, dd, J=0.5, 8.7 Hz), 3.40-3.48 (2H, m), 3.75 (1H, dd, J=6.8, 8.7 Hz), 3.98 (1H, qd, J=0.5, 7.3 Hz), 4.56 (1H, d, J=6.8 Hz), 5.40 and 5.57 (2H, AB system, J=11.4 Hz), 7.22 (1H, t, J=8.0 Hz), 7.28 (1H, t, J=8.0 Hz), 7.46 (1H, d, J=8.0 Hz), 8.19 (1H, d, J=8.0 Hz); MS m/z 423 (M⁺), 365, 306, 266, 181.
- For an intramolecular version, see: Magnus, P.; Cairns, P. M.; Kim, C. S. *Tetrahedron Lett.* 1985, 26, 1963.